## The 8 triangle matchstick puzzle

**Part I:** Remove 2 matchsticks in a figure made up of 8 triangles to leave just 6 equal triangles, clean with no stick overlap and no stick unattached to a shape.

**Part II:** In how many ways can you do it? How many rotationally unique solutions can you find?

**Total Recommended time** is 30 minutes.

Enjoy solving the puzzle.

### Comments

Well, how would you proceed to solve? Would you pick a stick from any part of the figure and proceed further? Or, you would analyze the figure and then only take your first action?

The second is the systematic approach.

### Solution to the stick puzzle: Remove 2 sticks from the 8 triangle figure to leave 6 equal triangles

The puzzle figure is shown below.

#### Initial analysis

In solving any matchstick puzzle first thing to do is to,

Examine the figure and identify

in what ways it is differentfrom theFINAL figurethat you have to make after solving the puzzle.

This is the essential first step COMMON to solving any matchstick puzzle.

Technical term used for the solution figure is the END STATE. So you have to do first **end state analysis** and arrive at any definite CONCLUSIONS that you can make.

#### Identify differences between the puzzle figure and final solution figure

Two attributes that make the starting and the final figure different are the COUNT of MATCHSTICKS and COUNT of TRIANGLES.

Puzzle figure has 16 matchsticks and final solution figure would have 14, less by 2. Also Puzzle figure has 8 triangles whereas the solution figure would have 6, again less by 2.

So you can make your **initial conclusion, **

In each stick remove, you have to reduce number of triangles by 1, that is,

you have to destroy 1 and only 1 triangle with each stick move.

#### Explore possiblities by systematic trial and make further conclusions

Why can't you destroy 2 triangles in 1 stick move?

Yes, you can. But the result will be bad.

If you remove any of the sticks common between two triangles, you would destroy 2 triangles. The following figure shows such a situation.

By removing the **single check-marked stick** that was common between two triangles **A** and **B**, you have surely destroyed the two triangles, but in the process, *created two double-check-marked sticks* *that are not part of any triangle.* And you have *only one stick removal in your quota left to make these two sticks part of a triangle which is not possible.*

So,

First requirement:You cannot remove any stick that is common between two triangles.

But what about **removing any stick** and *destroying only 1 triangle?* That should be a feasible action!

To understand that *you cannot just remove any stick that destroys a single triangle,* **make a small trial** by mentally removing any of the corner sticks. The result of such an action is shown below.

You have removed the single-check-marked stick of the left corner triangle A. See what happened as a result.

Sure, you have destroyed 1 triangle A by 1 stick removal, but in the process 1 hanging unattached stick is created (double-check-marked). In the second move, if you remove this hanging stick, *you would still be short in reducing number of triangles by 1.*

The same would happen if you remove any of the corner sticks of the other two corner triangles B and C.

If you have evaluated and understood these two situations, now you would be able to **refine** with confidence **the first requirement** to a more stringent form,

Second precise requirement:In each of the two stick removes only 1 triangle has to be destroyedwithout creating any hanging stick.

This is the **most important requirement of a stick removal that you have specified**

And with this precise knowledge with you, solving the puzzle from this point on would be easy because *search for the 2 sticks to remove would be very focused with this precise property of the sticks to be removed.*

#### Final solution: Finding the two right sticks to remove that satisfy the stringent requirements

With the knowledge gained till now, you would be able to refine the action requirement further to,

Third refined requirement:Each of the stick to be removed must be such that removing it, no part of the rest of the structure is disturbed except reduction of triangles by 1.

You may call this type of stick as a **FREE STICK,** removal of which does not disturb the rest of the figure except reducing number of triangles by 1.

Knowing now what you should look for, it does not take much time to identify two sticks each of which satisfies the specific requirements and gives you the solution as shown in the figure below.

This is your **first solution.** By removing two check-marked sticks you have reduced the number of triangles cleanly to 6 as is required.

But remember, you have solved the first part of your puzzle. *Second part still remains to be done.*

### Solution to Second part of the stick puzzle: How many solutions?

Without any hesitation, now you quickly identify two more free sticks, that is, a total of 4 free sticks in all. There is no more free stick meeting our requirement specification in this puzzle figure. The situation is shown below.

The four check-marked are the four free sticks. You would expect that removing ANY PAIR of sticks from these four would give you a solution.

Well, how many combinations or pairs can there be?

To accurately identify the combinations, the four sticks are further labeled as **a**, **b**, **c** and **d** as shown.

With this **alphabetic labeling** help, you can now easily identify all possible distinct pairs that can be chosen from these four free sticks a, b, c and d. The possible pair combinations are,

**ab**, **cd**, **ac**, **bd**, **ad** and **bc**.

In the first solution, the combination **ab** is already used.

The solution for combination **cd** is easy to visualize. *It must be the second solution.*

In whatever way you rotate it, the figure remains different from your first solution. It is the **second rotationally unique solution**. It is shown below.

The two single-check-marked sticks are removed reducing number of triangles cleanly by 2. The triangles A and B are destroyed cleanly in this solution.

#### Any more solutions?

But what happens if you remove first stick **a** and then stick **c**? In this case, you are examining whether stick combination, **ac** may produce a unique solution.

The situation is shown below.

First removal of **a** satisfies the stringent specification of stick that can be removed, but not the second stick **c**. The second stick removal creates a double-check-marked hanging stick and results in no solution.

In the process, number of triangles also reduced by 2 (as triangle A and C are destroyed by removal of stick **a** and stick **c**), but the single hanging stick made this combination of stick removal invalid.

You may express this situation in a more compact form as,

Fourth conclusion on stick removal constraint:In a valid solution of this puzzle, no two adjacent triangles can be destroyed.

By stick removal combination **ac**, the triangles destroyed are triangles A and C that are adjacent. So, this combination is not valid.

**Apply this more advanced rule** and realize that the *stick removal combination bd also is invalid* as the

**two triangles B and D destroyed are adjacent.**

By the same rule then, both the stick removal combinations **ad** and **bc** should result in a valid solution. The two possible solutions are shown below side by side.

**Question is**—are these two solutions both **ROTATIONALLY unique?**

**Uniqueness of a geometric shape** requires,

If the shape is rotated in any way

(orflipped horizontally or vertically), it should not become same as another shape that is already under consideration for uniqueness.

This is the **rotationally unique property** for the two possible solutions. And if you flip the possible solution 4 horizontally, it would become exactly same as the possible solution 3. The two possible solutions are not unique—they represent **only one unique solution.**

The third unique solution is shown below.

Answering the second part of the puzzle is not as easy as finding the first solution. But once you go through the **exhaustive step by step systematic method** for finding all unique solutions, you gain an insight in **pattern structures** and **methods** that you won't have had otherwise.

### Puzzles you may enjoy

#### Riddles

**Riddle of 4 persons crossing a bridge over a river at night**

**Riddle of PROBLEMSOLVING - Creation and application of Repetition pattern based technique**

#### Mathematical puzzles

**Reverse cheque puzzle solution**

**Counting eggs puzzles based on Euclid's division lemma**

**Monkey and the coconuts puzzle with solutions**

**10 digit Conway number puzzle with solution**

**World's Hardest Easy Geometry Puzzle Solved with Techniques Explained Step by Step**

**Hard Algebra Puzzles Solved by Basic Exponent Concepts and Reasoning**

**Three squares in a triangle puzzle**

**9 squares in a rectangle math puzzle**

**How many addition signs needed to make sum of 99**

#### Logic analysis puzzles

**Method based solution to Einstein's logic analysis puzzle, whose fish**

**How to solve Einstein's puzzle whose fish confidently, improved method based solution**

**Logic puzzle, When is Cheryl's birthday**

**Liar and truth-teller riddle with step by step easy solution**

#### River crossing puzzles

**Farmer with fox, goose and bag of corn crossing the river puzzle**

**Two pigs and two hens crossing river puzzle**

*3 monkeys and 3 humans crossing river puzzle*

**King queen minister washerman river crossing puzzle**

#### Ball weighing puzzles

**Find the heavier among 8 identical balls in 2 weighing puzzle**

**Find the fake ball among 8 identical balls in 3 weighing puzzle**

**Find the fake ball among 9 identical balls in 3 weighing puzzle**

**Find the fake ball among 12 identical balls in 3 weighing hard puzzle with solution**

#### Matchstick puzzles

**Solution to 6 triangles to 5 triangles in 2 moves, first matchstick puzzle**

**Matchstick puzzle 5 squares to 4 squares in 2 moves**

**Matchstick puzzle 5 squares to 4 squares in 3 moves**

**Matchstick puzzle, Turn around the fish in 3 moves**

**Fifth Matchstick puzzle, Move 3 sticks in tic-tac-toe figure to form 3 perfect squares**

**Hexagonal wheel to 3 triangles by removing 4 sticks**

**Convert 5 squares to 4 squares in 3 stick moves, third 5 square matchstick puzzle**

**Matchstick Puzzle - Make the kite nose-dive in 5 stick moves**

**Make 5 squares from 6 in 2 stick moves - 6 square matchstick puzzle**

**Move 3 sticks and convert 5 squares to 4 squares in 4th 5 square matchstick puzzle**

**Move 3 sticks and convert 4 squares to 3 squares matchstick puzzle**

**Move 8 sticks and convert 5 squares to 2 squares matchstick puzzle**

**First Move 3 sticks and make 2 squares matchstick puzzle**

**Second Move 3 sticks and make 2 squares matchstick puzzle**

**Remove 3 matchsticks to leave 6 triangles puzzle**

**Add 3 matchsticks to make 4 triangles - lateral thinking stick puzzle**

**Move 1 stick to make 4 closed shapes each with 3 or 4 sides**

**Move 2 sticks to make 5 closed shapes matchstick puzzle**

**Move 2 to make 7 squares matchstick puzzle - solution based on problem solving and innovation model**

**Move 4 to turn the tower upside down Matchstick puzzle**

**Move 2 matches to make 6 squares and move 8 matches to make 6 squares - a pair of matchstick puzzles**