You are here

SSC CGL level Question Set 47, Fractions decimals and surds 2

BODMAS fraction questions decimal questions SSC CGL  set 47

BODMAS fraction decimal questions, surds questions: SSC CGL set 47

10 BODMAS fraction questions, decimal questions and surds questions to solve in 18 minutes in SSC CGL Set 47. Verify correctness from answers.

Contents are,

  1. BODMAS fraction questions.
  2. Decimal BODMAS  questions.
  3. SURDS questions.
  4. Answers to the questions.

Link to the solution set is at the end.

10 questions BODMAS fraction decimal and surds SSC CGL set 47 - time to solve 18 mins

Problem 1.

Simplify $\displaystyle\frac{\displaystyle\frac{1}{3} + \displaystyle\frac{1}{4}\left[\displaystyle\frac{2}{5}-\displaystyle\frac{1}{2}\right]}{1\displaystyle\frac{2}{3}\text{ of } \displaystyle\frac{3}{4} - \displaystyle\frac{3}{4}\text{ of }\displaystyle\frac{4}{5}}$

  1. $\displaystyle\frac{74}{78}$
  2. $\displaystyle\frac{37}{13}$
  3. $\displaystyle\frac{37}{78}$
  4. $\displaystyle\frac{74}{13}$

Problem 2.

The value of $\displaystyle\frac{0.04}{0.03}\text { of }\displaystyle\frac{\left(3\displaystyle\frac{1}{3}-2\displaystyle\frac{1}{2}\right)\div{\displaystyle\frac{1}{2}}\text{ of }1\displaystyle\frac{1}{4}}{\displaystyle\frac{1}{3}+\displaystyle\frac{1}{5}\text{ of }\displaystyle\frac{1}{9}}$ is,

  1. $\displaystyle\frac{1}{5}$
  2. $1$
  3. $5$
  4. $\displaystyle\frac{1}{2}$

Problem 3.

$\sqrt{\displaystyle\frac{(6.1)^2+(61.1)^2+(611.1)^2}{(0.61)^2+(6.11)^2+(61.11)^2}}$ is equal to,

  1. 0.1
  2. 100
  3. 1.1
  4. 10

Problem 4.

$(0.\overline{1})^2\left[1-9(0.1\overline{6})^2\right]$ is equal to,

  1. $-\displaystyle\frac{1}{162}$
  2. $\displaystyle\frac{1}{109}$
  3. $\displaystyle\frac{1}{108}$
  4. $\displaystyle\frac{7696}{10^6}$

Problem 5.

The value of $\displaystyle\frac{2\displaystyle\frac{1}{3}-1\displaystyle\frac{2}{11}}{3+\displaystyle\frac{1}{3+\displaystyle\frac{1}{3+\displaystyle\frac{1}{3}}}}$ is,

  1. $\displaystyle\frac{38}{109}$
  2. $\displaystyle\frac{116}{109}$
  3. $1$
  4. $\displaystyle\frac{109}{38}$

Problem 6.

Find the value of $27\times{1.\overline{2}}\times{5.526\overline{2}}\times{0.\overline{6}}$.

  1. $121.7\overline{5}$
  2. $121.\overline{75}$
  3. $121.\overline{57}$
  4. $121.576\overline{8}$

Problem 7.

If $\displaystyle\frac{(x-\sqrt{24})(\sqrt{75}+\sqrt{50})}{\sqrt{75}-\sqrt{50}}=1$, then $x$ is,

  1. $5$
  2. $\sqrt{5}$
  3. $3\sqrt{5}$
  4. $2\sqrt{5}$

Problem 8.

$\displaystyle\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}+\displaystyle\frac{1}{\sqrt{2}-\sqrt{3}-\sqrt{5}}$ is equal to,

  1. $\displaystyle\frac{1}{\sqrt{2}}$
  2. $0$
  3. $\sqrt{2}$
  4. $1$

Problem 9.

$\left[8-\left[\displaystyle\frac{4^{\frac{9}{4}}\sqrt{2.2^2}}{2\sqrt{2^{-2}}}\right]^\frac{1}{2}\right]$ is equal to,

  1. 1
  2. 32
  3. 0
  4. 8

Problem 10.

The value of $\sqrt{\displaystyle\frac{(\sqrt{12}-\sqrt{8})(\sqrt{3}+\sqrt{2})}{5+\sqrt{24}}}$ is,

  1. $\sqrt{6}-\sqrt{2}$
  2. $\sqrt{6}-2$
  3. $2-\sqrt{6}$
  4. $\sqrt{6}+\sqrt{2}$

Answers to the questions

Problem 1. Answer: c: $\displaystyle\frac{37}{78}$.

Problem 2. Answer: Option c : $5$ .

Problem 3. Answer: Option d: 10.

Problem 4. Answer: c: $\displaystyle\frac{1}{108}$.

Problem 5. Answer: Option a: $\displaystyle\frac{38}{109}$.

Problem 6. Answer: Option d : $121.576\overline{8}$.

Problem 7. Answer: Option a: $5$.

Problem 8. Answer: Option a: $\displaystyle\frac{1}{\sqrt{2}}$.

Problem 9. Answer: Option c: 0.

Problem 10. Answer: Option b:$\sqrt{6}-2$.


You may refer to the companion solution set to this question sets at SSC CGL level Solution Set 47 on fractions decimals and surds 2.


Guided help on Fractions, Surds and Indices in Suresolv

To get the best results out of the extensive range of articles of tutorials, questions and solutions on fractions, surds and indices in Suresolv, follow the guide,

Suresolv Fractions, Surds and Indices Reading and Practice Guide for SSC CHSL, SSC CGL, SSC CGL Tier II and Other Competitive exams.

The guide list of articles includes ALL articles on Fractions, Surds and Indices‚Äč and relevant topics in Suresolv and is up-to-date.