SSC CGL level Question Set 75 Fractions decimal and indices 7 | SureSolv

You are here

For guided learning and practice on Number system and HCF LCM, follow Comprehensive Suresolv Number system HCF LCM Guide with all articles

SSC CGL level Question Set 75 Fractions decimal and indices 7

75th SSC CGL level Question Set, 7th on topic fractions, decimals and indices

ssc cgl question set 75 on fractions decimals indices 7

This is the 75th question set of 10 practice problem exercise for SSC CGL exam and 7th on topic fractions, decimals and indices. A few of the problems may seem large and time-consuming, but can be solved quickly.

Students must complete this question set in prescribed time first and then only refer to the corresponding solution set for extracting maximum benefits from this resource.

You may refer to the related tutorials, question and solution sets listed at the end.

75th question set - 10 problems for SSC CGL exam: 7th on topic Fractions, decimals, indices - time 15 mins

Problem 1.

$\displaystyle\frac{13}{48}$ is equal to,

  1. $\displaystyle\frac{1}{3+\displaystyle\frac{1}{1+\displaystyle\frac{1}{16}}}$
  2. $\displaystyle\frac{1}{3+\displaystyle\frac{1}{1+\displaystyle\frac{1}{1+\displaystyle\frac{1}{8}}}}$
  3. $\displaystyle\frac{1}{2+\displaystyle\frac{1}{1+\displaystyle\frac{1}{8}}}$
  4. $\displaystyle\frac{1}{3+\displaystyle\frac{1}{1+\displaystyle\frac{1}{2+\displaystyle\frac{1}{4}}}}$

Problem 2.

When $\left(\displaystyle\frac{1}{2} -\displaystyle\frac{1}{4}+\displaystyle\frac{1}{5}-\displaystyle\frac{1}{6}\right)$ is divided by $\left(\displaystyle\frac{2}{5} -\displaystyle\frac{5}{9}+\displaystyle\frac{3}{5}-\displaystyle\frac{7}{18}\right)$ the result is,

  1. $5\displaystyle\frac{1}{10}$
  2. $3\displaystyle\frac{1}{6}$
  3. $3\displaystyle\frac{3}{10}$
  4. $2\displaystyle\frac{1}{18}$

Problem 3.

On simplification, $3034-(1002\div{20.04})$ is equal to,

  1. $2993$
  2. $2984$
  3. $3029$
  4. $2543$

Problem 4.

Value of $\displaystyle\frac{\displaystyle\frac{5}{3}\times{\displaystyle\frac{7}{51}}\text{ of }\displaystyle\frac{17}{5}-\displaystyle\frac{1}{3}}{\displaystyle\frac{2}{9}\times{\displaystyle\frac{5}{7}}\text{ of }\displaystyle\frac{28}{5}-\displaystyle\frac{2}{3}}$ is,

  1. $\displaystyle\frac{1}{2}$
  2. $4$
  3. $\displaystyle\frac{1}{4}$
  4. $2$

Problem 5.

Value of $\displaystyle\frac{9|3-5|-5|4|\div{10}}{-3(5)-2\times{4}\div{2}}$ is,

  1. $\displaystyle\frac{9}{10}$
  2. $\displaystyle\frac{4}{7}$
  3. $-\displaystyle\frac{8}{17}$
  4. $-\displaystyle\frac{16}{19}$

Problem 6.

The value of

$\left(1+\displaystyle\frac{1}{10+\displaystyle\frac{1}{10}}\right)\left(1+\displaystyle\frac{1}{10+\displaystyle\frac{1}{10}}\right)-$

$\left(1-\displaystyle\frac{1}{10+\displaystyle\frac{1}{10}}\right)\left(1-\displaystyle\frac{1}{10+\displaystyle\frac{1}{10}}\right)$ ÷

$\left[\left(1+\displaystyle\frac{1}{10+\displaystyle\frac{1}{10}}\right)-\left(1-\displaystyle\frac{1}{10+\displaystyle\frac{1}{10}}\right)\right]$ is,

  1. $2$
  2. $\displaystyle\frac{90}{101}$
  3. $\displaystyle\frac{20}{101}$
  4. $\displaystyle\frac{100}{101}$

Problem 7.

The value of $8\displaystyle\frac{1}{2}-\left[3\displaystyle\frac{1}{4}\div{\left\{1\displaystyle\frac{1}{4}-\displaystyle\frac{1}{2}\left(1\displaystyle\frac{1}{2}-\displaystyle\frac{1}{3}-\displaystyle\frac{1}{6}\right)\right\}}\right]$ is 

  1. $4\displaystyle\frac{1}{2}$
  2. $\displaystyle\frac{2}{9}$
  3. $4\displaystyle\frac{1}{6}$
  4. $9\displaystyle\frac{1}{2}$

Problem 8.

$\sqrt{\displaystyle\frac{4\displaystyle\frac{1}{7}-2\displaystyle\frac{1}{4}}{3\displaystyle\frac{1}{2}+1\displaystyle\frac{1}{7}}\div{\displaystyle\frac{1}{2+\displaystyle\frac{1}{2+\displaystyle\frac{1}{5-\displaystyle\frac{1}{5}}}}}}$ is equal to,

  1. $1$
  2. $2$
  3. $3$
  4. $4$

Problem 9.

The value of $\displaystyle\frac{1+\displaystyle\frac{1}{2}}{1-\displaystyle\frac{1}{2}}\div{\displaystyle\frac{4}{7}\left(\displaystyle\frac{2}{5}+\displaystyle\frac{3}{10}\right)}\text { of }\displaystyle\frac{\displaystyle\frac{1}{2}+\displaystyle\frac{1}{3}}{\displaystyle\frac{1}{2}-\displaystyle\frac{1}{3}}$ is,

  1. $37\displaystyle\frac{1}{2}$
  2. $18\displaystyle\frac{3}{8}$
  3. $\displaystyle\frac{3}{2}$
  4. $\displaystyle\frac{2}{3}$

Problem 10.

When simplified, the expression $(100)^{\frac{1}{2}}\times{(0.001)^{\frac{1}{3}}}-(0.0016)^{\frac{1}{4}}\times{3^0}+\left(\displaystyle\frac{5}{4}\right)^{-1}$ is equal to,

  1. $1.0$
  2. $1.6$
  3. $0$
  4. $0.8$

You may refer to the corresponding solution set, SSC CGL Solution Set 75 on Fractions decimals and indices 7, where we have applied special time-saving techniques and methods to quickly solve the problems in mind as far as possible.

The answers to the questions are given below followed by a list of relevant articles of concept tutorials, question and solution sets.


Answers to the questions

Problem 1. Answer: Option d: $\displaystyle\frac{1}{3+\displaystyle\frac{1}{1+\displaystyle\frac{1}{2+\displaystyle\frac{1}{4}}}}$.

Problem 2. Answer. Option a: $5\displaystyle\frac{1}{10}$.

Problem 3. Answer: Option b. 2984.

Problem 4. Answer: Option d: $2$.

Problem 5. Answer: Option d: $-\displaystyle\frac{16}{19}$.

Problem 6. Answer: Option a: $2$.

Problem 7. Answer: Option c: $4\displaystyle\frac{1}{6}$.

Problem 8. Answer: Option a: 1.

Problem 9. Answer. Option a: $37\displaystyle\frac{1}{2}$.

Problem 10. Answer: Option b: $1.6$.


Guided help on Fractions, Surds and Indices in Suresolv

To get the best results out of the extensive range of articles of tutorials, questions and solutions on fractions, surds and indices in Suresolv, follow the guide,

Suresolv Fractions, Surds and Indices Reading and Practice Guide for SSC CHSL, SSC CGL, SSC CGL Tier II and Other Competitive exams.

The guide list of articles includes ALL articles on Fractions, Surds and Indices​ and relevant topics in Suresolv and is up-to-date.


Share